Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E. J., Berk, R., … & Cesarini, D. (2018). Redefine statistical significance. Nature Human Behaviour, 2(1), 6.


Zhuang, X., Chen, Y., Zhuang, X., Xing, T., Chen, T., Jiang, G., & Yang, X. (2017). Impaired center-surround suppression in patients with Alzheimer’s disease. Journal of Alzheimer’s Disease, 55(3), 1101-1108.

Chang, L., & Tsao, D. Y. (2017). The Code for Facial Identity in the Primate Brain. Cell, 169(6), 1013-1028.

Wei, X. X., & Stocker, A. A. (2017). Lawful relation between perceptual bias and discriminability. Proceedings of the National Academy of Sciences, 114(38), 10244-10249.


Acuna, D. E., Berniker, M., Fernandes, H. L., & Kording, K. P. (2015). Using psychophysics to ask if the brain samples or maximizes. Journal of vision, 15(3), 7-7.

Cecere, R., Rees, G., & Romei, V. (2015). Individual differences in alpha frequency drive crossmodal illusory perception. Current Biology : CB, 25(2), 231–235.

Petzschner, F. H., Glasauer, S., & Stephan, K. E. (2015). A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 19(5), 285–293.


Neri, P. (2014). Dynamic Engagement of Human Motion Detectors across Space–Time Coordinates. The Journal of Neuroscience, 34(25), 8449-8461.

Fischer, J., & Whitney, D. (2014). Serial dependence in visual perception. Nature Neuroscience.

Jogan, M., & Stocker, A. A. (2014). A new two-alternative forced choice method for the unbiased characterization of perceptual bias and discriminability. Journal of Vision, 14(3), 20–20. doi:10.1167/14.3.20


Laming, D. (2013). Probability summation—a critique. JOSA A, 30(3), 300–315.

Melnick, M. D., Harrison, B. R., Park, S., Bennetto, L., & Tadin, D. (2013). A Strong Interactive Link between Sensory Discriminations and Intelligence. Current Biology, 23(11), 1013–1017. doi:10.1016/j.cub.2013.04.053

Gepshtein, S., Lesmes, L. A., & Albright, T. D. (2013). Sensory adaptation as optimal resource allocation. Proceedings of the National Academy of Sciences, 110(11), 4368–4373. doi:10.1073/pnas.1204109110

Matthews, N., Welch, L., Festa, E., & Clement, A. (2013). Remapping time across space. Journal of Vision, 13(8). doi:10.1167/13.8.2

Dorr, M., & Bex, P. J. (2013). Peri-saccadic natural vision. Journal of Neuroscience, 33(3), 1211–1217.

Cavanagh, P., & Anstis, S. (2013). The flash grab effect. Vision Research.

Gold, J. I., & Ding, L. (2013). How mechanisms of perceptual decision-making affect the psychometric function. Progress in Neurobiology, 103, 98–114. doi:10.1016/j.pneurobio.2012.05.008


Ma, W. J. (2012). Organizing probabilistic models of perception. Trends in Cognitive Sciences, 16(10), 511–518.

K. Asakawa, A. Tanaka, H. Imai, Audiovisual temporal recalibration for speech in synchrony perception and speech identification, Kansei Eng. Int. 11 (2012) 35–40.

Simoncini, C., Perrinet, L. U., Montagnini, A., Mamassian, P., & Masson, G. S. (2012). More is not always better: adaptive gain control explains dissociation between perception and action. nature neuroscience, 15(11), 1596–1603.

Rolfs, M., & Carrasco, M. (2012). Rapid Simultaneous Enhancement of Visual Sensitivity and Perceived Contrast during Saccade Preparation. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(40), 13744–13752a.

Prins, N. (2012). The psychometric function: The lapse rate revisited. Journal of Vision, 12(6), 25–25. doi:10.1167/12.6.25

Moscatelli, A., Mezzetti, M., & Lacquaniti, F. (2012). Modeling psychophysical data at the population-level: The generalized linear mixed model. Journal of Vision, 12(11), 26–26. doi:10.1167/12.11.26

Mareschal, I., & Clifford, C. W. G. (2012). Dynamics of unconscious contextual effects in orientation processing. Proceedings of the National Academy of Sciences, 109(19), 7553–7558.

O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nature Publishing Group. doi:10.1038/nn.3248

Tomassini, A., Gori, M., Burr, D., Sandini, G., & Morrone, M. C. (2012). Active movement restores veridical event-timing after tactile adaptation. Journal of Neurophysiology, 108(8), 2092–2100.

Selen, L. P. J., Shadlen, M. N., & Wolpert, D. M. (2012). Deliberation in the Motor System: Reflex Gains Track Evolving Evidence Leading to a Decision. Journal of Neuroscience, 32(7), 2276–2286.

Chopin, A., & Mamassian, P. (2012). Predictive Properties of Visual Adaptation. Current biology. Long lasting adaptation effects in the opposite direction of the typical after-effects. See Maus, G. W., Chaney, W., Liberman, A., & Whitney, D. (2013). The challenge of measuring long-term positive aftereffects. Current Biology, 23(10), R438–R439. doi:10.1016/j.cub.2013.03.024

Kuang, X., Poletti, M., Victor, J. D., & Rucci, M. (2012). Temporal Encoding of Spatial Information during Active Visual Fixation.

O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nature Publishing Group. doi:10.1038/nn.3248


Sinn, P., & Engbert, R. (2011). Saccadic facilitation by modulation of microsaccades in natural backgrounds. Attention, Perception & Psychophysics, 73(4), 1029–1033. doi:10.3758/s13414-011-0107-9

Schneider, K. A. (2011). Attention alters decision criteria but not appearance: a reanalysis of Anton-Erxleben, Abrams, and Carrasco (2010). Journal of Vision, 11(13), 1–8. doi:10.1167/11.13.7

Glasser, D. M., Tsui, J. M. G., Pack, C. C., & Tadin, D. (2011). Perceptual and neural consequences of rapid motion adaptation. Proceedings of the National Academy of Sciences, 108(45), E1080–8. doi:10.1073/pnas.1101141108

Nagai, T., Beer, R. D., Krizay, E. A., & MacLeod, D. I. A. (2011). Spatiotemporal averaging of perceived brightness along an apparent motion trajectory. Journal of Vision, 11(7), 5–5. doi:10.1167/11.7.5

Webb, B. S., Ledgeway, T., & Rocchi, F. (2011). Neural Computations Governing Spatiotemporal Pooling of Visual Motion Signals in Humans. Journal of Neuroscience, 31(13), 4917–4925. doi:10.1523/JNEUROSCI.6185-10.2011

Arnold, D. H., & Yarrow, K. (2011). Temporal recalibration of vision. Proceedings Of The Royal Society B-Biological Sciences, 278(1705), 535–538. doi:10.1098/rspb.2010.1396

Kliegl, R., Rolfs, M., Laubrock, J., & Engbert, R. (2011). Microsaccadic modulation of response times in spatial attention tasks. Psychological Research, 73(2), 136–146. doi:10.1007/s00426-008-0202-2

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. doi:10.1177/0956797611417632

Schneider, K. A. (2011). Attention alters decision criteria but not appearance: a reanalysis of Anton-Erxleben, Abrams, and Carrasco (2010). Journal of Vision, 11(13), 7. doi:10.1167/11.13.7

Anton-Erxleben, K., Abrams, J., & Carrasco, M. (2011). Equality judgments cannot distinguish between attention effects on appearance and criterion: A reply to Schneider (2011). Journal of Vision, 11(13), 8–8. doi:10.1167/11.13.8

Watanabe, M., Cheng, K., Murayama, Y., Ueno, K., Asamizuya, T., Tanaka, K., & Logothetis, N. (2011). Attention But Not Awareness Modulates the BOLD Signal in the Human V1 During Binocular Suppression. Science, 334(6057), 829–831. doi:10.1126/science.1203161

Ohshiro, T., Angelaki, D. E., & DeAngelis, G. C. (2011). A normalization model of multisensory integration. nature neuroscience, 14(6), 775–782. doi:10.1038/nn.2815

Nishimoto, S., & Gallant, J. L. (2011). A Three-Dimensional Spatiotemporal Receptive Field Model Explains Responses of Area MT Neurons to Naturalistic Movies. Journal of Neuroscience, 31(41), 14551–14564. doi:10.1523/JNEUROSCI.6801-10.2011


Jazayeri, M., & Shadlen, M. N. (2010). Temporal context calibrates interval timing. Nature Neuroscience, 13(8), 1020–1026. http://doi.org/10.1038/nn.2590

Hietanen, M. A., Cloherty, S. L., Clifford, C. W. G., & Ibbotson, M. R. (2010). Differential changes in perceived contrast following contrast adaptation in humans. Vision Research, 50(1), 12–19. doi:10.1016/j.visres.2009.10.002

Poletti, M., Listorti, C., & Rucci, M. (2010). Stability of the Visual World during Eye Drift. Journal of Neuroscience, 30(33), 11143–11150. doi:10.1523/JNEUROSCI.1925-10.2010

Heess, N., & Bair, W. (2010). Direction opponency, not quadrature, is key to the 1/4 cycle preference for apparent motion in the motion energy model. Journal of Neuroscience, 30(34), 11300–11304. doi:10.1523/JNEUROSCI.1271-10.2010

Morris, A., Liu, C., Cropper, S., Forte, J., Krekelberg, B., & Mattingley, J. (2010). Summation of visual motion across eye movements reflects a nonspatial decision mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(29), 9821.

Tadin, D., Lappin, J., Blake, R., & Glasser, D. (2010). High temporal precision for perceiving event offsets. Vision Research.

Motoyoshi, I., & Hayakawa, S. (2010). Adaptation-induced blindness to sluggish stimuli. Journal of Vision, 10(2).

Chappell, M., & Mullen, K. (2010). The Magnocellular visual pathway and the flash-lag illusion. Journal of Vision.

Rolfs, M., Jonikaitis, D., & Deubel, H. (2010). Predictive remapping of attention across eye movements. nature neuroscience.

Fujisaki, W., & Nishida, S. (2010). A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities. Proceedings of the Royal ….

Tavassoli, A., & Ringach, D. L. (2010). When your eyes see more than you do. Current Biology, 20(3), R93–R94. doi:10.1016/j.cub.2009.11.048 Will the effect survive detection measures instead of discrimination?

Anton-Erxleben, K., Abrams, J., & Carrasco, M. (2010). Evaluating comparative and equality judgments in contrast perception: Attention alters appearance. Journal of Vision, 10(11), 6–6. doi:10.1167/10.11.6

Busch, N., & VanRullen, R. (2010). Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proceedings of the National Academy of Sciences, 107(37), 16048.


Powers, A. R., Hillock, A. R., & Wallace, M. T. (2009). Perceptual training narrows the temporal window of multisensory binding. Journal of Neuroscience, 29(39), 12265–12274. doi:10.1523/JNEUROSCI.3501-09.2009

Burr, D., Silva, O., Cicchini, G. M., Banks, M. S., & Morrone, M. C. (2009). Temporal mechanisms of multimodal binding. Proceedings Of The Royal Society B-Biological Sciences, 276(1663), 1761–1769.

Roach, N. W., & McGraw, P. V. (2009). Dynamics of Spatial Distortions Reveal Multiple Time Scales of Motion Adaptation. Journal of Neurophysiology, 102(6), 3619–3626.

Burr, D. C., Baldassi, S., Morrone, M. C., & Verghese, P. (2009). Pooling and segmenting motion signals. Vision Research, 49(10), 1065–1072. doi:10.1016/j.visres.2008.10.024

Warren, P. A., & Rushton, S. K. (2009). Optic Flow Processing for the Assessment of Object Movement during Ego Movement. Current Biology, 19(18), 1555–1560. doi:10.1016/j.cub.2009.07.057

Gauch, A., & Kerzel, D. (2009). Contributions of visible persistence and perceptual set to the flash-lag effect: Focusing on flash onset abolishes the illusion. Vision Research, 49(24), 2983–2991. The visual persistence

Cicchini, G. M., Cicchini, G. M., Morrone, M. C., & Morrone, M. C. (2009). Shifts in spatial attention affect the perceived duration of events. Journal of Vision, 9(1), 9–9. doi:10.1167/9.1.9

Fujisaki, W., & Nishida, S. (2009). Audio–tactile superiority over visuo–tactile and audio–visual combinations in the temporal resolution of synchrony perception. Experimental Brain Research, 198(2-3), 245–259.

Stocker, A. A., & Simoncelli, E. P. (2009). Visual motion aftereffects arise from a cascade of two isomorphic adaptation mechanisms. Journal of Vision.

Solomon, J. A. (2009). The history of dipper functions. Attention, Perception & Psychophysics, 71(3), 435–443. doi:10.3758/APP.71.3.435

Kaneko, S., & Murakami, I. (2009). Perceived duration of visual motion increases with speed. Journal of Vision, 9(7), 14–14. doi:10.1167/9.7.14

Seriès, P., Stocker, A. A., & Simoncelli, E. P. (2009). Is the homunculus “aware” of sensory adaptation? Neural Computation, 21(12), 3271–3304. Very comprehensive paper of the possible effects of adaptation in population coding and decoding.

Lakatos, P., O’Connell, M. N., Barczak, A., Mills, A., Javitt, D. C., & Schroeder, C. E. (2009). The leading sense: supramodal control of neurophysiological context by attention. Neuron, 64(3), 419–430. doi:10.1016/j.neuron.2009.10.014

Busch, N. A., Dubois, J., & Vanrullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29(24), 7869–7876.

Scharnowski, F., Rüter, J., Jolij, J., Hermens, F., Kammer, T., & Herzog, M. H. (2009). Long-lasting modulation of feature integration by transcranial magnetic stimulation. Journal of Vision, 9(6), 1.1–10. doi:10.1167/9.6.1


Arabzadeh, E., Clifford, C. W. G., & Harris, J. A. (2008). Vision merges with touch in a purely tactile discrimination. Psychological Science, 19(7), 635–641.

Terao, M., Watanabe, J., Yagi, A., & Nishida, S. (2008). Reduction of stimulus visibility compresses apparent time intervals. nature neuroscience, 11(5), 541–542. doi:10.1038/nn.2111

Cavanagh, P., Holcombe, A. O., & Chou, W. (2008). Mobile computation: Spatiotemporal integration of the properties of objects in motion. Journal of Vision, 8(12), 1–1. doi:10.1167/8.12.1

McGraw, P. V., & Roach, N. W. (2008). Centrifugal propagation of motion adaptation effects across visual space. Journal of Vision, 8(11), 1–1. doi:10.1167/8.11.1

Brenner, E., Mamassian, P., & Smeets, J. B. J. (2008). If I saw it, it probably wasn’t far from where I was looking. Journal of Vision, 8(2), 7–7. doi:10.1167/8.2.7

White, B., Stritzke, M., & Gegenfurtner, K. (2008). Saccadic facilitation in natural backgrounds. Current Biology, 18(2), 124–128.

Blakeslee, B., & McCourt, M. E. (2008). Nearly instantaneous brightness induction. Journal of Vision, 8(2), 15.1–8. doi:10.1167/8.2.15

Lakatos, P., Karmos, G., Mehta, A.D., Ulbert, I., and Schroeder, C.E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113.

Churan, J., Khawaja, F., Tsui, J., & Pack, C. (2008). Brief motion stimuli preferentially activate surround-suppressed neurons in macaque visual area MT. Current Biology, 18(22), R1051–R1052.

Seitz, A. R., Pilly, P. K., & Pack, C. C. (2008). Interactions between contrast and spatial displacement in visual motion processing. Current Biology, 18(19), R904–R906. doi:10.1016/j.cub.2008.07.065

Montemurro, M. A., Rasch, M. J., Murayama, Y., Logothetis, N. K., & Panzeri, S. (2008). Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex. Current Biology, 18(5), 375–380. doi:10.1016/j.cub.2008.02.023


Huang, L., Treisman, A., & Pashler, H. (2007). Characterizing the limits of human visual awareness. Science, 317(5839), 823–825. doi:10.1126/science.1143515

Nishida, S., Watanabe, J., Kuriki, I., & Tokimoto, T. (2007). Human Visual System Integrates Color Signals along a Motion Trajectory. Current Biology, 17(4), 366–372. doi:10.1016/j.cub.2006.12.041

Motoyoshi, I. (2007). Temporal freezing of visual features. Current Biology, 17(11), 404–406.

García-Pérez, M. A., & Alcalá-Quintana, R. (2007). The transducer model for contrast detection and discrimination: formal relations, implications, and an empirical test. Spatial Vision, 20(1-2), 5–43. Very clearly written paper about the relations of the psychometric function for detection and discrimination, the TvCs functions and the shape of the transducer.

Schwartz, G., Taylor, S., Fisher, C., Harris, R., & Berry, M. J., II. (2007). Synchronized Firing among Retinal Ganglion Cells Signals Motion Reversal. Neuron, 55(6), 958–969. doi:10.1016/j.neuron.2007.07.042

Majaj, N., Carandini, M., & Movshon, J. (2007). Motion integration by neurons in macaque MT is local, not global. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(2), 366.

Heuer, H. W., & Britten, K. H. (2007). Linear responses to stochastic motion signals in area MST. Journal of Neurophysiology, 98(3), 1115–1124.


Del Viva, M. M. (2006). Powerful Motion Illusion Caused by Temporal Asymmetries in ON and OFF Visual Pathways. Journal of Neurophysiology, 95(6), 3928–3932. doi:10.1152/jn.01335.2005

Hafed, Z. M., Hafed, Z. M., Krauzlis, R. J., & Krauzlis, R. J. (2006). Ongoing eye movements constrain visual perception. nature neuroscience, 9(11), 1449–1457. doi:10.1038/nn1782

Stetson, C., Cui, X., Montague, P. R., & Eagleman, D. M. (2006). Motor-sensory recalibration leads to an illusory reversal of action and sensation. Neuron, 51(5), 651–659. doi:10.1016/j.neuron.2006.08.006

Pesavento, M. J., & Schlag, J. (2006). Transfer of learned perception of sensorimotor simultaneity. Experimental Brain Research, 174(3), 435–442. doi:10.1007/s00221-006-0476-9

Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vision Research, 46(11), 1762–1776. doi:10.1016/j.visres.2005.10.002

Johnston, A., Arnold, D. H., & Nishida, S. (2006). Spatially Localized Distortions of Event Time. Current Biology, 16(5), 472–479. doi:10.1016/j.cub.2006.01.032

Jiang, Y., Costello, P., Fang, F., Huang, M., & He, S. (2006). A gender-and sexual orientation-dependent spatial attentional effect of invisible images. Proceedings of the National Academy of Sciences, 103(45), 17048.

Sommer, M. A., & Wurtz, R. H. (2006). Influence of the thalamus on spatial visual processing in frontal cortex. Nature, 444(7117), 374–377. doi:10.1038/nature05279

Jack, A. I., Shulman, G. L., Snyder, A. Z., McAvoy, M., & Corbetta, M. (2006). Separate Modulations of Human V1 Associated with Spatial Attention and Task Structure. Neuron, 51(1), 135–147. doi:10.1016/j.neuron.2006.06.003

Rust, N., Mante, V., Simoncelli, E., & Movshon, J. (2006). How MT cells analyze the motion of visual patterns. nature neuroscience, 9(11), 1421–1431.

Jazayeri, M., & Movshon, J. (2006). Optimal representation of sensory information by neural populations. nature neuroscience, 9(5), 690–696.

Kim, Y., Grabowecky, M., Paller, K., Muthu, K., & Suzuki, S. (2006). Attention induces synchronization-based response gain in steady-state visual evoked potentials. Nature Neuroscience, 10(1), 117–125.


Kanai, R., & Verstraten, F. A. J. (2005). Perceptual manifestations of fast neural plasticity: motion priming, rapid motion aftereffect and perceptual sensitization. Vision Research, 45(25-26), 3109–3116.

Ludwig, C. J. H., Gilchrist, I. D., McSorley, E., & Baddeley, R. J. (2005). The temporal impulse response underlying saccadic decisions. Journal of Neuroscience, 25(43), 9907–9912.

Osborne, L. C., Lisberger, S. G., & Bialek, W. (2005). A sensory source for motor variation. Nature, 437(7057), 412–416.

Morrone, M. C., Ross, J., & Burr, D. (2005). Saccadic eye movements cause compression of time as well as space. nature neuroscience, 8(7), 950–954.

Arnold, D., Johnston, A., & Nishida, S. (2005). Timing sight and sound. Vision Research, 45(10), 1275–1284.

Blaser, E., Papathomas, T., & Vidnyánszky, Z. (2005). Binding of motion and colour is early and automatic. European Journal of Neuroscience, 21(7), 2040–2044.

Purushothaman, G., & Bradley, D. C. (2005). Neural population code for fine perceptual decisions in area MT. nature neuroscience, 8(1), 99–106.

Huang, X., Blau, S., & Paradiso, M. (2005). Background changes delay the perceptual availability of form information. Journal of Neurophysiology, 94(6), 4331.

Alvarez, G., & Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual hemifields. Psychological Science, 16(8), 637–643.

Fujisaki, W., & Nishida, S. (2005). Temporal frequency characteristics of synchrony–asynchrony discrimination of audio-visual signals. Experimental Brain Research, 166(3-4), 455–464.


Tse, P. U., Intriligator, J., Rivest, J., & Cavanagh, P. (2004). Attention and the subjective expansion of time. Perception and Psychophysics, 66(7), 1171–1189.

Moore, C. M., Moore, C. M., Enns, J. T., & Enns, J. T. (2004). Object Updating and the Flash-Lag Effect. Psychological Science, 15(12), 866–871. doi:10.1111/j.0956-7976.2004.00768.x

Fujisaki, W., Shimojo, S., Kashino, M., & Nishida, S. (2004). Recalibration of audiovisual simultaneity. nature neuroscience, 7(7), 773–778

Murakami, I. (2004). Correlations between fixation stability and visual motion sensitivity. Vision Research, 44(8), 751–761. doi:10.1016/j.visres.2003.11.012

Osborne, L. C., Bialek, W., & Lisberger, S. G. (2004). Time course of information about motion direction in visual area MT of macaque monkeys. Journal of Neuroscience, 24(13), 3210–3222. doi:10.1523/JNEUROSCI.5305-03.2004

Kohn, A., & Movshon, J. A. (2004). Adaptation changes the direction tuning of macaque MT neurons. nature neuroscience, 7(7), 764–772. doi:10.1038/nn1267


Arnold, D. H., & Johnston, A. (2003). Motion-induced spatial conflict. Nature, 425(6954), 181–184. doi:10.1038/nature01955

Schneider, K. A., & Bavelier, D. (2003). Components of visual prior entry. Cognitive Psychology, 47(4), 333–366. doi:10.1016/S0010-0285(03)00035-5

Clifford, C. W. G., Arnold, D. H., & Pearson, J. (2003). A paradox of temporal perception revealed by a stimulus oscillating in colour and orientation. Vision Research, 43(21), 2245–2253.

Whitney, D., Westwood, D. A., & Goodale, M. A. (2003). The influence of visual motion on fast reaching movements to a stationary object. Nature, 423(6942), 869–873. doi:10.1038/nature01693

Hine, T. J., White, A. M. V., & Chappell, M. (2003). Is there an auditory-visual flash-lag effect? Clinical & Experimental Ophthalmology, 31(3), 254–257.

Kerzel, D., & Gegenfurtner, K. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology, 13(22), 1975–1978.

Seitz, A. R., & Watanabe, T. (2003). Is subliminal learning really passive. Nature, 422(6927), 36.

Tadin, D., Lappin, J., Gilroy, L., & Blake, R. (2003). Perceptual consequences of centre–surround antagonism in visual motion processing. Nature, 424(6946), 312–315.

Moore, T., & Armstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421(6921), 370–373. doi:10.1038/nature01341


Yu, C., Klein, S. A., & Levi, D. M. (2002). Facilitation of contrast detection by cross-oriented surround stimuli and its psychophysical mechanisms. Journal of Vision, 2(3), 243–255. Good illustration of standard psychophysical techniques to clarify mechanisms.

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433.

Li, F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proceedings Of The National Academy Of Sciences Of The United States Of America, 99(14), 9596.

Burr, D., & Ross, J. (2002). Direct evidence that“ speedlines” influence motion mechanisms. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22(19), 8661.


Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception and Psychophysics, 63(8), 1293–1313.

Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: II. Bootstrap-based confidence intervals and sampling. Perception and Psychophysics, 63(8), 1314–1329.

Yamamoto, S., & Kitazawa, S. (2001). Reversal of subjective temporal order due to arm crossing. nature neuroscience, 4(7), 759–765. doi:10.1038/89559

Clifford, C. W., Wyatt, A. M., Arnold, D. H., Smith, S. T., & Wenderoth, P. (2001). Orthogonal adaptation improves orientation discrimination. Vision Research, 41(2), 151–159.

Burr, D. C., & Santoro, L. (2001). Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Research, 41(15), 1891–1899.

He, S., & MacLeod, D. I. A. (2001). Orientation-selective adaptation and tilt after-effect from invisible patterns. Nature, 411(6836), 473–476. doi:10.1038/35078072

Holcombe, A. O., & Cavanagh, P. (2001). Early binding of feature pairs for visual perception. nature neuroscience, 4(2), 127–128. doi:10.1038/83945

Stone, J. V., Hunkin, N. M., Porrill, J., Wood, R., Keeler, V., Beanland, M., Port, M., et al. (2001). When is now? Perception of simultaneity. Proceedings Of The Royal Society B-Biological Sciences, 268(1462), 31–38. doi:10.1098/rspb.2000.1326

Hol, K., & Treue, S. (2001). Different populations of neurons contribute to the detection and discrimination of visual motion. Vision Research, 41(6), 685–689.

Supèr, H., Spekreijse, H., & Lamme, V. A. F. (2001). Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). nature neuroscience, 4(3), 304–310. doi:10.1038/85170

Pack, C. C., & Born, R. T. (2001). Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature, 409(6823), 1040–1042. doi:10.1038/35059085


Clifford, C. W., Wenderoth, P., & Spehar, B. (2000). A functional angle on some after-effects in cortical vision. Proceedings. Biological sciences / The Royal Society, 267(1454), 1705–1710. doi:10.1098/rspb.2000.1198

Whitney, D., & Cavanagh, P. (2000). Motion distorts visual space: shifting the perceived position of remote stationary objects. nature neuroscience, 3(9), 954–959. doi:10.1038/78878

Hayes, A. (2000). Apparent position governs contour-element binding by the visual system. Proceedings Of The Royal Society B-Biological Sciences, 267(1450), 1341–1345. doi:10.1098/rspb.2000.1148

Schlag, J., Cai, R. H., Dorfman, A., Mohempour, A., & Schlag-Rey, M. (2000). Extrapolating movement without retinal motion. Nature, 403(6765), 38–39. doi:10.1038/47402

Diamond, M., Ross, J., & Morrone, M. (2000). Extraretinal control of saccadic suppression. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(9), 3449–3455.

Verstraten, F. A., Cavanagh, P., & Labianca, A. T. (2000). Limits of attentive tracking reveal temporal properties of attention. Vision Research, 40(26), 3651–3664.

Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity of V4 neurons. Neuron, 26(3), 703–714. Searching for neural correlates of attentional facilitation.

Vinje, W. E., & Gallant, J. L. (2000). Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 287(5456), 1273–1276.


Aschersleben, G., & Müsseler, J. (1999). Dissociations in the timing of stationary and moving stimuli. JOURNAL OF EXPERIMENTAL PSYCHOLOGY HUMAN PERCEPTION AND PERFORMANCE, 25(6), 1709.

Johnston, A., & Nishida, S. (1999). Influence of motion signals on the perceived position of spatial pattern. Nature, 397(6720), 610–612. doi:10.1038/17600


Murakami, I., & Cavanagh, P. (1998). A jitter after-effect reveals motion-based stabilization of vision. Nature, 395(6704), 798–801. doi:10.1038/27435

Allik, J., & Kreegipuu, K. (1998). Multiple visual latency. Psychological Science, 9(2), 135–138.

Simoncelli, E. P., & Heeger, D. J. (1998). A model of neuronal responses in visual area MT. Vision Research, 38(5), 743–761.


Moutoussis, K., & Zeki, S. (1997). A direct demonstration of perceptual asynchrony in vision. Proceedings. Biological sciences / The Royal Society, 264(1380), 393–399. doi:10.1098/rspb.1997.0056

Morrone, M., Ross, J., & Burr, D. C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. The Journal of neuroscience : the official journal of the Society for Neuroscience, 17(20), 7941–7953.

Nijhawan, R. (1997). Visual decomposition of colour through motion extrapolation. Nature.


Verghese, P., & Stone, L. (1996). Perceived visual speed constrained by image segmentation. Nature, 381(6578), 161–163.

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520–522.

Shadlen, M. N., Britten, K. H., Newsome, W. T., & Movshon, J. A. (1996). A computational analysis of the relationship between neuronal and behavioral responses to visual motion. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 16(4), 1486–1510. Decisions are based in the activity of many neurons.


Burr, D. C., Morrone, M. C., & Ross, J. (1994). Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature, 371(6497), 511-513.

Qian, N., Andersen, R., & Adelson, E. (1994). Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics. The Journal of neuroscience : the official journal of the Society for Neuroscience, 14(12), 7357.

Tappe, T., Niepel, M., & Neumann, O. (1994). A dissociation between reaction time to sinusoidal gratings and temporal-order judgment. Perception, 23(3), 335–347.

Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370(6487), 256–257. doi:10.1038/370256b0


Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1993). Responses of neurons in macaque MT to stochastic motion signals. Visual Neuroscience, 10(6), 1157–1169. Response of MT neurons with coherence is pretty linear, which follows the power spectra of the stimulus. Discussions about the comparison with contrast are made.


Viviani, P., & Stucchi, N. (1992). Biological movements look uniform: evidence of motor-perceptual interactions. Journal of Experimental Psychology Human Perception and Performance, 18(3), 603–623.

Werkhoven, P., Snippe, H. P., & Alexander, T. (1992). Visual processing of optic acceleration. Vision Research, 32(12), 2313–2329.

Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a comparison of neuronal and psychophysical performance. The Journal of neuroscience : the official journal of the Society for Neuroscience, 12(12), 4745–4765. Neural sensitivity of a few MT neurons is compatible with behavioural sensitivity.

Duhamel, J., Colby, C., & Goldberg, M. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255(5040), 90.

Snowden, R. J., Treue, S., & Andersen, R. A. (1992). The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. Experimental Brain Research, 88(2), 389–400.


De Valois, R. L., & De Valois, K. K. (1991). Vernier acuity with stationary moving Gabors. Vision Research, 31(9), 1619–1626.


Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19(5), 611–616.

Salzman, C. D., Britten, K. H., & Newsome, W. T. (1990). Cortical microstimulation influences perceptual judgements of motion direction. Nature, 346(6280), 174–177. doi:10.1038/346174a0


Newsome, W. T., Britten, K. H., & Movshon, J. A. (1989). Neuronal correlates of a perceptual decision. Nature, 341(6237), 52–54. doi:10.1038/341052a0


Mateeff, S., & Hohnsbein, J. (1988). Perceptual latencies are shorter for motion towards the fovea than for motion away. Vision Research, 28(6), 711–719.


Johnston, A., & Wright, M. J. (1986). Matching velocity in central and peripheral vision. Vision Research, 26(7), 1099–1109.


Burr, D. C. (1981). Temporal summation of moving images by the human visual system. Proceedings of the Royal Society of London Series B, Containing papers of a Biological character Royal Society (Great Britain), 211(1184), 321–339.

Nakayama, K., & Tyler, C. W. (1981). Psychophysical isolation of movement sensitivity by removal of familiar position cues. Vision Research, 21(4), 427–433.


Dixon, N. F., & Spitz, L. (1980). The detection of auditory visual desynchrony. Perception, 9(6), 719–721.

Burr, D. (1980). Motion smear. Nature, 284(5752), 164–165.


Watson, A. B. (1979). Probability summation over time. Vision Research, 19(5), 515–522.


Levinson, E., & Sekuler, R. (1976). Adaptation alters perceived direction of motion. Vision Research, 16(7), 779–781. ‘If the code for perceived direction depends upon the direction-specific channels, then this adaptation-induced change in their pattern of responsiveness should alter the apparent direction of movement of suprathreshold test stimulus. Here we report such a shift in the perceived direction’.


Westheimer, G., & McKee, S. P. (1975). Visual acuity in the presence of retinal-image motion. Journal Of The Optical Society Of America, 65(7), 847–850.


Nachmias, J., & Sansbury, R. V. (1974). Letter: Grating contrast: discrimination may be better than detection. Vision Research, 14(10), 1039–1042.

Braddick, O. (1974). A short-range process in apparent motion. Vision Research, 14(7), 519–527.


Day, R. (1971). Reduction or disappearance of visual after effect of movement in the absence of patterned surround. Nature.

Sekuler, R., & Erlebacher, A. (1971). The invalidity of “invalid results from the method of constant stimuli”: A common artifact in the methods of psychophysics. Perception and Psychophysics, 9(3), 309–311.


Blakemore, C., Nachmias, J., & Sutton, P. (1970). The perceived spatial frequency shift: evidence for frequency-selective neurones in the human brain. The Journal of physiology, 210(3), 727–750.


Campbell, F. W., & Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. The Journal of Physiology, 197(3), 551–566.


Ikeda, M. (1965). Temporal summation of positive and negative flashes in the visual system. JOSA, 55(11), 1527–1533.


MacKay, D. M. (1958). Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature, 181(4607), 507–508.


Hecht, S., Shlaer, S., & PIRENNE, M. H. (1942). ENERGY, QUANTA, AND VISION. The Journal of General Physiology, 25(6), 819–840.